

CGEO INTERNATIONAL LIMITED

CGEO-CM Signal Converter VW to $4\sim20$ Installation Manual (REV A)

TABLE of CONTENTS

	Page
1. Introduction	1
2. Specification	2
3. Connector and Cable Wiring	3
4. Settings and Readout By RS232 Port	
4.1 Commands	4
4.2 Communication with Converter by Hyperterminal4.3 Examples for the Converter settings	4 5
5The Method of Calculating Results	7

1. INTRODUCTION

The CGEO-CM VW to 4-20mA Converter is a device that provides continuous excitation to the vibrating wire and converts the frequency signals of the VW sensor to 4-20mA signals. The CGEO-CM output is a current (4-20mA), which is directly proportional to the pressure exerted on the VW gage.

Operation of the CGEO-CM is simply a matter of connecting the VW gage to the CONVERTER connector on the enclosure, supplying DC power (12-16VDC), and setting the gage parameters to the CONVERTER via RS232 with Hyperterminal software. The system will begin normal operating as soon as these conditions are met.

The CGEO-CM is designed to be used in situations that the data collector system can't read the VW gage signals. This condition can be met usually when updating old monitoring system.

The CGEO-CM can also be used as an intelligent sensor with a VW gage. The results can be read by RS232 communication port.

2. SPECIFICATIONS

Power:

DC 12.5-16V, 50-80mA **Input:** Gage Type: VW sensors Accuracy: 0.1Hz Resolution: 0.01Hz **Output:** Signal Type: 4-20mA Resolution: 16 bits Nonlinearity: 0.012%(Max) Offset Error: 0.05% (Max) Total Output Error: 0.2% (MAX) Total Output Error Drift: 20ppm/Centigrade(Type) **RS232** 9600bps, no verify, 8 bits, 1 stop bit. **Refresh Rate:** Once every 10 seconds. Physical Size: 156mm(L) 84mm(W) 68mm(H) Weight: 400g. Operating temperature: 32-120 F(0-50 C)Humidity: 99% (non-condensing)

3. Connector and Cable Wiring

The positions of connectors on PC board are shown as follows:

P1 is the connector of power supply input and 4-20mA output. The SENSOR connector should be

connected to the VW sensor.

(1). Power supply input and 4-20mA output (P1)

Pin No.	Name	Description
1	GND	Power Ground
2	Vin	12.5-16V DC Power Supply
3	GND	Analog Ground
4	4-20mA	4-20mA Output Signal

(2). Sensor connector

Pin No.	Pin Name	Description
1	Wire 1	First Wire of VW Sensor
2	Wire 2	Second Wire of VW Sensor
3	GND	Shield Ground

Attention: The Pins No.2 and No.3 are connected to System Ground internally on board. For most VW sensors, Pin 1 and Pin 2 can be connected without order. But, for some kinds of VW sensors, one wire of the sensor is connected to shield in the sensor, so the wire which is connected to shield should be connected to Pin No.2.

4. Settings and Readout By RS232 Port

To get better result, some parameters should be set to the converter, so the VW to 4-20mA Converter provides a RS232 serial port. By the RS232 port, the parameters can be set and the measurement result can be read out.

(4.1). Commands

- (a). Setting High-Digits corresponding to 4mA Command: Hxxxxx.xx (CR LF) Response: H=xxxxx.xx(CR LF) "(CR LF)" stands for a pair of carriage return(ASCII code: 0D hex) and line feed(ASCII code: 0A hex).
 xxxxx.xx is the High-Digits number corresponding to 4mA(No pressure). Digits=Frequency*Frequency/1000
 (b). Setting Low-Digits corresponding to 20mA (Full range pressure).
- (b). Setting Low-Digits corresponding to 20mA (Full range pressu

Command: Lxxxxx.xx (CR LF)

Response: L=xxxxx.xx(CR LF)

- (c). Query High-Digits SettingsCommand: ?H (CR LF)Response: H=xxxxx.xx(CR LF)
- (d). Query Low-Digits SettingsCommand: ?L (CR LF)Response: L=xxxxx.xx(CR LF)
- (e). Query the result of the measurement Command: ? (CR LF)

Response: F=xxxx.xxHz, R=xxxxx.xx, I=xx.xxxmA(CR LF)

where F is the frequency of VW sensor, R is the result of Digits (F*F/1000), and I is the

theoretical value of the 4-20mA output.

I=4 + 16*(High_Digits - R) / (High_Digits - Low_Digits)

(4.2). Communication with Converter by Hyperterminal

Because the character linefeed(LF,0A hex) can't be input by keyboard, to communicate with the converter by *Hyperterminal* software, we should do the following settings before communicating.

Select "File"---->"Properties"---->"Settings"----> "ASCII Setup", enter into the "ASCII Setup" Form, check the following two checkboxes of "ASCII Sending"

Send line ends with line feeds

Echo typed characters locally

Checking the first checkbox orders the computer to send line feed (LF, 0A hex) after carriage return (CR, 0D hex) when we press Enter key.

Checking the 2nd checkbox makes the characters input displayed on screen. Because the converter doesn't echo the characters, the characters typed will not be displayed if we don't select this checkbox.

(4.3). Examples for the Converter settings

Assume that the table (shown in next page) is the calibration table of the sensor which is connected to the VW to 4-20mA Converter. According to the calibration table, neglect the influence of temperature, the following relationship can be get:

High-Digits = 9250

Low-Digits = 5456

Hence, the converter parameters can be set as follows:

Note, There is a CRLF pair (Enter key) after each command.

H9250	Command	
H= 9250.00	Response	
L5456	Command	
L= 5456.00	Response	
?H	Query	
H = 9250.00	Response	
?L	Query	
L= 5456.00	Response	
? (Query results	
F=3021.05H	z, R=9126.74,	I=4.5198mA

where: R=F*F/1000 I=4 + 16 * (9250-R) / (9250-5456) = 4.5198(mA)

		V		P	C.	liburt	on Der	aut
V1 Model Number:	brating V	wire Pr	essure	ransa	Pressu	indrati		50 psi
- Serial Number:	n/a	a		Mfg. Number		. Number:	02-6226	
Customer:				_	Ter	nperature:	23.0 °	C
- Cust. I.D. #:	1D # n/a		+Barometric Pressure:		1002.4 mbar			
- Job Number:	197	57		Date of Calibration:			November 19, 2002	
Cal. Std. (Control #(s):	407, 468, 500), 511, 524, 52	9, 403, 018	т	echnician:		
Pressure	Reading	Pressure	Reading	Average	Average		Linearity	Polynomial
(psi)	1st Cycle	(psi)	2nd Cycle	Pressure	Reading	Change	(%FS)	Fit (%FS)
0	9250	0	9250	0	9250	7.50	0.15	-0.01
30	8499	30	8498	30	8499	752	-0.04	-0.01
60	7742	60	7742	60	7742	757	-0.10	0.03
90	6985	90	6985	90	6985	757	-0.14	-0.01
120	6223	120	6223	120	6223	762	-0.06	-0.02
150	5455	150	5456	150	5450	/08	0.17	0.01
Linear Gage	e Factor (G):	0.0	3954	(psi/ digit)	Regressi	on Zero: _	9256
Polyno	mial Gage Fa	ctors: A:	-1.251E-07	. В:	-0.0	3770	C:*	359.41
Thermal Factor (K):								
Calculate	ed Pressures: **Barometric	compensation	Linear, P = Polynomial is <u>not</u> require	$G(\mathbf{R}_0 - \mathbf{R}_1)$ $\mathbf{P} = \mathbf{A}\mathbf{R}_1^2$ ed with ventee)+K(T ₁ - T + BR ₁ + C d and differen	•)-(S ₁ - S ₀) C +K(T ₁ - T tial pressure	** Γ ₀)-(S ₁ - S ₀) (ransatucers.)* *
Factory Z Readout	ero Reading: Pos. B or F(R ₀):	9245	Temp(T ₀):	23.7	†Baro(S ₀):	998.8	mbar Date:	November 25, 20
*The user is advi	† Barometric p sed to establish z	ressure is bas (appoxi ero conditions	ed upon Geoko mate correction : in the field bv	n factory elev 1 for altitude recording the	vation of 177n = 0.5 psi / 10 v reading at a	1 (580 ft.) abi 00 ft.) known tempi	ove sea level. erature and ba	trometric pressure.
The second period of the	Wiring Code:	Red and	Black: Gage	White a	nd Green: '	Thermistor	Bare: Sh	ield
The above name	Th ed instrument	e above instru has been ca	iment was foun librated by c with	d to be in tok omparison ANSI Z540	erance in all o with stand)-1.	perating rang ards tracea	ges. ble to the N	IIST, in complia

5. The Method of Calculating Results

Assume that the output is Iout (mA), we can get the Digits result as: R=High_Digit - (Iout - 4) * (High_Digits - Low_Digits) /16 According to the above example, the Pressure can be calculated as: P=G(R₀-R) (1) or P=AR²+BR+C (2)

The above formula (1) can be simplified as follows: $P=G_{I} (I - I_{0})$ Where: $G_{I} = G^{*}(High_Digits - Low_Digits)/16$ $I_{0} = 4 + 16^{*}(High_Digits - R_{0})/(High_Digits - Low_Digits)$ If the High_Digits is set as High_Digits=R_{0}, Then $P = G_{I} (I-4) \qquad (3)$ $G_{I} = G^{*}(High_Digits - Low_Digits)/16 \qquad (4)$ $High_Digits=R0 \qquad (5)$